XIV Serbian Conference on Spectral Line Shapes in Astrophysics Bajina Bašta, Serbia, June 19 - 23, 2023 Book of Abstracts, Eds. Luka Č. Popović, Nataša Bon, Edi Bon and Sylvie Sahal-Bréchot

OUTFLOW MORPHOLOGY IN THE ACTIVE GALACTIC NUCLEUS OF CIRCINUS GALAXY

S. Knežević¹, D. Kakkad², M. Stalevski^{1,3}, M. Kishimoto⁴, D. Asmus^{5,6} and F. P. A. Vogt⁷

 ¹Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia
²Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
³Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281-S9, Gent, 9000, Belgium
⁴Department of Astrophysics & Atmospheric Sciences, Faculty of Science, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
⁵Department of Physics & Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
⁶Gymnasium Schwarzenbek, 21493 Schwarzenbek, Germany
⁷Federal Office of Meteorology and Climatology - MeteoSwiss, Chemin de l'Aérologie 1, 1530 Payerne, Switzerland

E-mail: sknezevic@aob.rs

We present VLT/MUSE narrow-field mode observations of the Circinus galaxy at a spatial resolution of ~0.1" (physical scale of ~2 pc) that resolve the central region of the AGN. The observations reveal a collimated ionized gas outflow fragmented into two filaments forming a 'tuning-fork' shape. While the origin of the collimated outflow could be a result of jet-ISM interactions on small scales, the extinction map obtained from the outflowing components suggests that the dust clump at the tip of the collimated part of the outflow might explain its fragmentation. We estimated a total instantaneous mass outflow rate of $10^{-2} M_{\odot} \text{ yr}^{-1}$ and a time-average mass outflow rate of $10^{-4} M_{\odot} \text{ yr}^{-1}$.